Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction.
Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system / Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, ANNA MARIA; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 6:(2016). [10.1038/srep26995]
Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system
BORGHI, ANNA MARIA;
2016
Abstract
Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction.File | Dimensione | Formato | |
---|---|---|---|
jacquet_Changing_2016.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.